Temporary financial assistance reduced the probability of unstable housing among Veterans for more than 1 year

Abstract: The Department of Veterans Affairs (VA) aims to reduce homelessness among veterans through programs such as Supportive Services for Veteran Families (SSVF). An important component of SSVF is temporary financial assistance. Previous research has demonstrated the effectiveness of temporary financial assistance in reducing short-term housing instability, but studies have not examined its long-term effect on housing outcomes. Using data from the VA's electronic health record system, we analyzed the effect of temporary financial assistance on veterans' housing instability for three years after entry into SSVF. We extracted housing outcomes from clinical notes, using natural language processing, and compared the probability of unstable housing among veterans who did and did not receive temporary financial assistance. We found that temporary financial assistance rapidly reduced the probability of unstable housing, but the effect attenuated after forty-five days. Our findings suggest that to maintain long-term housing stability for veterans who have exited SSVF, additional interventions may be needed.

Read the full article
Report a problem with this article

Related articles

  • More for Researchers

    Identifying opioid relapse during COVID-19 using natural language processing of nationwide Veterans Health Administration electronic medical record data

    Abstract: Novel and automated means of opioid use and relapse risk detection are needed. Unstructured electronic medical record data, including written progress notes, can be mined for clinically relevant information, including the presence of substance use and relapse-critical markers of risk and recovery from opioid use disorder (OUD). In this study, we used natural language processing (NLP) to automate the extraction of opioid relapses, and the timing of these occurrences, from veteran patients' electronic medical record. We then demonstrated the utility of our NLP tool via analysis of pre-/post-COVID-19 opioid relapse trends among veterans with OUD. For this demonstration, we analyzed data from 107,606 veterans OUD enrolled in Veterans Health Administration, comparing a pandemic-exposed cohort (n = 53,803; January 2019-March 2021) to a matched prepandemic cohort (n = 53,803; October 2017-December 2019). The recall of our NLP tool was 75% and our precision was 94%, demonstrating moderate sensitivity and excellent specificity. Using the NLP tool, we found that the odds of opioid relapse postpandemic onset were proportionally higher compared to prepandemic trends, despite patients having fewer mental health encounters from which to derive instances of relapse postpandemic onset. In this research application of the tool, and as hypothesized, we found that opioid relapse risk was elevated postpandemic. The application of NLP Methods: to identify and monitor relapse risk holds promise for future surveillance, risk prevention, and clinical outcome research.